31 research outputs found

    How does the radio enhancement of broad absorption line quasars relate to colour and accretion rate?

    Get PDF
    The origin of radio emission in different populations of radio-quiet quasars is relatively unknown, but recent work has uncovered various drivers of increased radio-detection fraction. In this work, we pull together three known factors: optical colour (g - i), C IV distance (a proxy for L/LEdd), and whether or not the quasar contains broad absorption lines (BALQSOs) which signify an outflow. We use SDSS (Sloan Digital Sky Survey) DR14 spectra along with the LOFAR Two Metre Sky Survey Data Release 2 and find that each of these properties have an independent effect. BALQSOs are marginally more likely to be radio-detected than non-BALQSOs at similar colours and L/LEdd, moderate reddening significantly increases the radio-detection fraction and the radio detection increases with L/LEdd above a threshold for all populations. We test a widely used simple model for radio wind shock emission and calculate energetic efficiencies that would be required to reproduce the observed radio properties. We discuss interpretations of these results concerning radio-quiet quasars more generally. We suggest that radio emission in BALQSOs is connected to a different physical origin than the general quasar population since they show different radio properties independent of colour and C IV distance

    1-arcsecond imaging strategy for the LoTSS survey using the International LOFAR Telescope

    Full text link
    We present the first wide area (2.5 x 2.5 square degrees), deep (median noise of approximately 80 microJy per beam) LOFAR High Band Antenna image at a resolution of 1.2 arcseconds by 2 arcseconds. It was generated from an 8-hour International LOFAR Telescope (ILT) observation of the ELAIS-N1 field at frequencies ranging from 120 to 168 MHz with the most up-to-date ILT imaging strategy. This intermediate resolution falls between the highest possible resolution (0.3 arcseconds) achievable by using all International LOFAR Telescope (ILT) baselines and the standard 6-arcsecond resolution in the LoTSS (LOFAR Two-meter Sky Survey) image products utilizing the LOFAR Dutch baselines only. This is the first demonstration of the feasibility of approximately 1 arcsecond imaging using the ILT, providing unique information on source morphology at scales below the surface brightness limits of higher resolutions. The total calibration and imaging time is approximately 52,000 core hours, nearly five times more than producing a 6-arcsecond image. We also present a radio source catalog containing 2263 sources detected over the 2.5 x 2.5 square degrees image of the ELAIS-N1 field, with a peak intensity threshold of 5.5 sigma. The catalog has been cross-matched with the LoTSS deep ELAIS-N1 field radio catalog, and its flux density and positional accuracy have been investigated and corrected accordingly. We find that approximately 80% of sources that we expect to be detectable based on their peak brightness in the LoTSS 6-arcsecond image are detected in this image, which is approximately a factor of two higher than for 0.3 arcsecond imaging in the Lockman Hole, implying there is a wealth of information on these intermediate scales.Comment: Submitted to A&

    The LOFAR long baseline snapshot calibrator survey

    Get PDF
    Aims. An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full international LOFAR array. Sources were preselected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators. Results. More than 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the sky density of calibrators that are sufficiently bright to calibrate dispersive and non-dispersive delays for the international LOFAR using existing methods is 1.0 per square degree. Conclusions. The observed density of satisfactory delay calibrator sources means that observations with international LOFAR should be possible at virtually any point in the sky provided that a fast and efficient search, using the methodology described here, is conducted prior to the observation to identify the best calibrator

    A panchromatic view of infrared quasars: excess star formation and radio emission in the most heavily obscured systems

    Get PDF
    To understand the active galactic nuclei (AGNs) phenomenon and their impact on the evolution of galaxies, a complete AGN census is required; however, finding heavily obscured AGNs is observationally challenging. Here we use the deep and extensive multiwavelength data in the COSMOS field to select a complete sample of 578 infrared (IR) quasars (LAGN,IR > 1045 erg s−1) at z < 3, with minimal obscuration bias, using detailed UV-to-far-IR spectral energy distribution (SED) fitting. We complement our SED constraints with X-ray and radio observations to further investigate the properties of the sample. Overall, 322 of the IR quasars are detected by Chandra and have individual X-ray spectral constraints. From a combination of X-ray stacking and L2−10 kev – L6 μm analyses, we show that the majority of the X-ray faint and undetected quasars are heavily obscured (many are likely Compton thick), highlighting the effectiveness of the mid-IR band to find obscured AGNs. We find that 355 (≈61 per cent) IR quasars are obscured (NH > 1022 cm−2) and identify differences in the average properties between the obscured and unobscured quasars: (1) obscured quasars have star formation rates ≈3 times higher than unobscured systems for no significant difference in stellar mass and (2) obscured quasars have stronger radio emission than unobscured systems, with a radio-loudness parameter ≈ 0.2 dex higher. These results are inconsistent with a simple orientation model but in general agreement with either extreme host-galaxy obscuration towards the obscured quasars or a scenario where obscured quasars are an early phase in the evolution of quasars

    Seeing the forest and the trees: a radio investigation of the ULIRG Mrk 273

    Get PDF
    Galaxy mergers have been observed to trigger nuclear activity by feeding gas to the central supermassive black hole. One such class of objects are Ultra Luminous InfraRed Galaxies (ULIRGs), which are mostly late stage major mergers of gas-rich galaxies. Recently, large-scale (∼100 kpc) radio continuum emission has been detected in a select number of ULIRGs, all of which also harbour powerful Active Galactic Nuclei (AGN). This hints at the presence of large-scale radio emission being evidence for nuclear activity. Exploring the origin of this radio emission and its link to nuclear activity requires high sensitivity multi-frequency data. We present such an analysis of the ULIRG Mrk 273. Using the International LOFAR telescope (ILT), we detected spectacular large-scale arcs in this system. This detection includes, for the first time, a giant ∼190 kpc arc in the north. We propose these arcs are fuelled by a low power radio AGN triggered by the merger. We also identified a bright ∼45 kpc radio ridge, which is likely related to the ionised gas nebula in that region. We combined this with high sensitivity data from APERture Tile In Focus (Apertif) and archival data from the Very Large Array (VLA) to explore the spectral properties. The ILT simultaneously allowed us to probe the nucleus at a resolution of ∼0.3″, where we detected three components, and, for the first time, diffuse emission around these components. Combining this with archival high frequency VLA images of the nucleus allowed us to detect absorption in one component, and a steep spectrum radio AGN in another. We then extrapolate from this case study to the importance of investigating the presence of radio emission in more ULIRGs and what it can tell us about the link between mergers and the presence of radio activity

    A BAYESIAN MONTE CARLO ANALYSIS OF THE M-σ RELATION

    No full text
    We present an analysis of selection biases in the M-sigma relation using Monte- Carlo simulations including the sphere of influence resolution selection bias and a selection bias in the velocity dispersion distribution. We find that the sphere of influence selection bias has a significant effect on the measured slope of the M-sigma relation, modeled as \beta_intrinsic = -4.69 + 2.22\beta_measured, where the measured slope is shallower than the model slope in the parameter range of \beta > 4, with larger corrections for steeper model slopes. Therefore, when the sphere of influence is used as a criterion to exclude unreliable measurements, it also in- troduces a selection bias that needs to be modeled to restore the intrinsic slope of the relation. We find that the selection effect due to the velocity dispersion distribution of the sample, which might not follow the overall distribution of the population, is not important for slopes of \beta ~ 4-6 of a logarithmically linear M-sigma relation, which could impact some studies that measure low (e.g., \beta < 4) slopes. Combining the selection biases in velocity dispersions and the sphere of influence cut, we find the uncertainty of the slope is larger than the value without modeling these effects, and estimate an intrinsic slope of \beta = 5.28^{+0.84}_{-0.55}.Comment: 21 pages, 7 figures, accepted for publication in Ap

    Investigating the cause of the α–z relation

    Get PDF
    The correlation between radio spectral index and redshift has long been used to identify high redshift radio galaxies, but its cause is unknown. Traditional explanations invoke either (i)(i) intrinsic relations between spectral index and power, (ii)(ii) environmental differences at high redshift, or (iii)(iii) higher inverse Compton losses due to the increased photon energy density of the cosmic microwave background. In this paper we investigate whether the increased inverse Compton losses alone can cause the observed spectral index - redshift correlation by using spectral modelling of nearby radio galaxies to simulate high redshift equivalents. We then apply selection effects and directly compare the simulated radio galaxy sample with an observed sample with sufficient redshift coverage. We find excellent agreement between the two, implying that inverse Compton losses and selection effects alone can largely reproduce the observed spectral index - redshift correlation.Comment: 7 pages, 4 figures. Accepted for publication in MNRA

    UNVEILING THE INTRINSIC X-RAY PROPERTIES OF BROAD ABSORPTION LINE QUASARS WITH A RELATIVELY UNBIASED SAMPLE

    No full text
    There is growing evidence of a higher intrinsic fraction of broad absorption line quasars (BALQSOs) than that obtained in optical surveys, on which most previous X-ray studies of BALQSOs have focused. Here we present Chandra observations of 18 BALQSOs at z2z\sim2, selected from a near-infrared (2MASS) sample, where the BALQSO fraction is likely to be close to the intrinsic fraction. We measure photon indices using the stacked spectra of the optically-faint (iKs2.3i-K_s\geq 2.3 mag) and optically-bright (iKs<2.3i-K_s < 2.3 mag) samples to be Γ1.5\Gamma \simeq 1.5--2.12.1. We constrain their intrinsic column density by modelling the X-ray fractional hardness ratio, finding a mean column density of 3.5×10223.5\times10^{22} \cmsq\ assuming neutral absorption. We incorporate SDSS optical measurements (rest frame UV) to study the broadband spectral index between the X-ray and UV bands, and compare this to a large sample of normal quasars. We estimate that the optically-faint BALQSOs are X-ray weaker than the optically-bright ones, and the entire sample of BALQSOs are intrinsically X-ray weak when compared to normal AGN. Correcting for magnification of X-ray emission via gravitational lensing by the central black hole viewed at large inclination angles makes these BALQSOs even more intrinsically X-ray weak. Finally, we estimate AGN kinetic feedback efficiencies of a few percent for an X-ray wind of 0.3c0.3c in high-ionization BALQSOs. Combined with energy carried by low-ionization BALQSOs and UV winds, the total kinetic energy in BALQSOs can be sufficient to provide AGN kinetic feedback required to explain the co-evolution between black holes and host galaxies.Comment: Accepted for publication in ApJ, 12 pages, 9 figures, 4 table
    corecore